If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10k^2+20k=0
a = -10; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-10)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-10}=\frac{-40}{-20} =+2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-10}=\frac{0}{-20} =0 $
| 28+24b+42=17 | | 3(m+2)/4=2m+3 | | 30+1.50m=12+3m | | 5x+3=2x=9 | | 3x+6-6x=15 | | 4.25x*7x=16 | | 12+6x=120 | | √4x+1+9=14 | | k^2-16k+64=9k^2 | | 46+2x=7x+-44 | | 8(2b-1)-5(2b+3)=-5 | | 2/5=r/35 | | 5.5x=-3.2x | | 8r+-32=7r+10 | | 37=-3x-6x+1 | | -3x=-|1-x| | | -(8n-2)=3+10(1-3n0 | | 146=6x+6x+2 | | 101=6x+2x+5 | | X^2+21x-7408=0 | | 5x+2/7=3x-6/5 | | 16x^2+32x-2=0 | | 5/4y^2+y=y^2 | | 7x^2-42x+5=0 | | 2(4+x)=-16 | | _.375x=12 | | 4x+2-6x=6 | | .375x=12 | | B=68b+11 | | 2/5x-11=15 | | 4.4-x=5.6 | | 4x-4+2x=62 |